Samarium diiodide mediated reductive addition reaction of 1-(phenylsulfonylmethyl) benzotriazole and 1-(benzoyloxymethyl) benzotriazole to aldehydes and ketones

Zhifang Lia and Yongmin Zhanga,b*

^{a:} Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou, Zhejiang, 310028, P.R. China

b: Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P.R. China

1-(β-hydroxyalkyl) benzotriazoles were prepared via reductive addition reactions of Bt¹CH₂SO₂Ph or Bt¹CH₂OC(O)Ph with aldehydes and ketones under mild conditions promoted by Sml₂.

Keywords: samarum diiodide, 1-(β-hydroxyalkyl) benzotriazoles

Benzotriazole is a synthetic auxiliary which has been used in a number of transformations, in recent years.¹ The Benzotriazole anion is a good leaving group, which has been used in place of a halogen atom in many reactions. A variety of compounds have been synthesised via a benzotriazole auxiliary, including, amines,² enamines,³ esters,⁴ ethers,⁵ sulfides,⁶ sulfones,⁷ phosphorous-containing compopunds,⁸ and selenium containing compounds. Among numerous N-derivatives of benzotriazole, 1-(chloromethyl) benzotriazole has been studied in detail. 10, 11 Little attention has been paid to 1-(phenylsulfonylmethyl) benzotriazole and 1-(benzoyloxymethyl) in organic synthesis. Herein we wish to report that with SmI₂-Barbier protocol, Bt¹CH₂SO₂Ph or Bt1CH2OC(O)Ph (1) undergo reductive addition reactions smoothly with aldehydes and ketones (2) to give 1-(β-hydroxyalkyl) benzotriazoles (3) in good yields (Scheme 1).

 $X = PhSO_2$, PhC(O)O

Scheme 1

Samarium diiodide has been wildly applied in organic synthesis as a powerful, versatile and ether-soluble one-electron transfer reductant. Previous work has shown that SmI_2 can induce reductive debenzoyloxylation and desulfonylation desulfonylation. However, little attention has paid to the reductive addition reactions following debenzoyloxylation and desulfonylation. We found that $Bt^1CH_2SO_2Ph$ and $Bt^1CHOC(O)Ph$ could undergo reductive addition to aldehydes and ketones promoted by SmI_2 smoothly affording 1- β -(hydroxyalkyl) benzotriazoles in good yields. The results and scope of this reaction are shown in Table 1.

Thus, 1-β-(hydroxyalkyl) benzotriazoles were obtained under mild conditions. These products are useful in the synthesis of some oxygen-containing heterocylic compounds.¹⁵

Literature strategies for the preparation of oxygen-containing heterocylic compounds include the subsequent reactions of lithiated 1-alkylbenzotriazoles¹⁶ and 1-(α-trimethylsily) alkyl benzotriazoles.¹⁷ The present method, however, requires only very mild conditions, thus may have more important utility.

In conclusion, under SmI_2 -Barbier conditions, $Bt^1CH_2SO_2Ph$ and $Bt^1CHOC(O)Ph$ can undergo reductive addition reactions with aldehydes and ketones to afford 1- β -(hydroxyalkyl) benzotriazoles.

Experimental section

Melting points were uncorrected. IR spectra were recorded on a Bruck Vector 22 spectrometer, ¹H NMR spectra were obtain with a Bruker AC 80 MHz spectrometer in CDCl3 solution using TMS as internal standard. Mass spectra were obtained on a HP 5989B mass spectrometer. Elemental analyses were performed on a Carlo Erba 1106 instrument. The reactions were performed in a Schlenk type glass apparatus under a nitrogen atmosphere. THF was freshly distilled from sodium-benzophenone ketyl prior to use.

General procedure for the synthesis of 1- β -(hydroxyalkyl)benzotriazoles: Under nitrogen atmosphere, Bt 1 CH $_2$ SO $_2$ Ph (1 mmol, 5ml THF) or Bt 1 CHOC(O)Ph (1 mmol, 1ml THF) added to a solution of SmI $_2$ (2-3 mmol) in THF (25 ml). Then the mixture was stirred at room temperature. After given times (Table 1), the reaction mixture was quenched with hydrochloric acid (2 mol/l, 2 ml), and extracted with ether (3×15 ml). The combined organic layer was washed with brine, dried over anhydrous Na $_2$ SO $_4$, filtered and the solvent was removed under reduced pressure. The residue was purified by preparative TLC on silica gel (1:3 ethyl acetate/cyclohexane).

Compound **3a:** m.p. 68–70°C. ν_{max} (KBr)/cm⁻¹: 3360, 3080, 2980, 1650, 1610, 1465, 1440, 1280, 1230, 1170, 1150, 1100, 780, 750. δ_{H} (ppm) 8.01–8.04 (m, 1H), 7.26–7.48 (m, 3H), 4.30 (d, 2H, J=7.2Hz), 3.41–3.61 (m, 1H), 2.30 (br, 1H), 1.23–1.50 (m, 6H), 0.86–0.88 (t, 3H, J=6.6Hz). MS: m/z, 220 (M+1), 219 (M+), 201 (2.00), 77 (100). Anal. calcd. for C₁₂H₁₇N₃O: C 65.75, H 7.76, N 19.18. Found: C 65.70, H 7.75, N 19.14.

Compound **3b:** m.p. 60–62°C (lit., 11 60–61 °C). v_{max} (KBr)/cm⁻¹: 3360, 3090, 2980, 1650, 1610, 1465, 1440, 1280, 1230, 1170, 1150, 1100, 780, 750. δ_{H} (ppm) 8.01–8.02 (m, 1H), 7.26–7.40 (m, 3H), 4.50 (d, 2H, J=7.2Hz), 4.10–4.20 (m, 1H), 2.32 (br, 1H), 1.23–1.70 (m, 4H), 0.88–0.90 (t, 3H, J=6.6Hz).

Compound 3c: m.p. 83–84°C (lit., 11 85°C). $\nu_{\rm max}$ (KBr)/cm $^{-1}$:3340, 3090, 2980, 1650, 1610, 1465, 1440, 1280, 1230, 1170, 1150, 1100, 780, 750. $\delta_{\rm H}$ (ppm) 8.01–8.02 (m, 1H), 7.26–7.40 (m, 3H), 4.50 (d, 2H, J=7.2Hz), 4.20–4.30 (m, 1H), 2.32 (br, 1H), 1.80–1.85 (m, 1H), 1.41–1.50 (m, 2H), 0.90 (d, 6H, J=6.0Hz).

Compound **3d:** m.p. 113–114°C (lit., 11 114°C). v_{max} (KBr)/cm $^{-1}$: 3480, 3080, 3000, 1635, 1600, 1465, 1390, 1205, 1170, 1085, 930, 785, 765, 740. $\delta_{\rm H}$ (ppm) 8.01–8.02 (m, 1H), 7.42–7.61(m, 3H), 4.61 (s, 2H), 2.23 (br, 1H), 1.32 (s, 6H).

^{*} To receive any correspondence. E-mail: yminzhang@mail.hz.zj.cn

 $[\]dagger$ This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.

Table 1 Synthesis of 1-(β-hydroxyalkyl) benzotriazoles

Entry	X	Sml ₂ /mmol	Carbonyl compounds	Products	Time/h	Yield*/%
a	PhSO ₂	3	O	OH 	4	85
	PhC(O)O	2	Н	Bt	2	85
b	PhSO₂	3	O 	OH 	4	80
	PhC(O)O	2	H	Bt	3	85
С	PhSO ₂	3		ОН 	4	75
	PhC(O)O	2	Н	Bt	3	80
d	PhSO ₂	3	0	ОН	4	75
	PhC(O)O	2		Bt	3	85
е	PhSO ₂	3	P	OH 	4	80
	PhC(O)O	2		Bt	3	80
f	PhSO ₂	3	=0	ОН	4	75
	PhC(O)O	2		Bt	3	80
g	PhSO ₂	3		ОН	4	75
	PhC(O)O	2	0	Bt	4	80
h	PhSO ₂	3	O II	HO Bt	4	85
	PhC(O)O	2	Ph Ph	Ph Ph	3	85
i	PhSO ₂	3	o L	HO C ₆ H ₄ (p-CH ₃)	4	80
	PhC(O)O	2 (<i>p</i> -CF	$H_3 C_6 H_4 C_6 H_4 (p - CH_3)$	$C_6H_4(p-CH_3)$	3	85

^{*}Isolated yields

Compound 3e: m.p. 110°C (lit., 11 110°C). v_{max} (KBr)/cm⁻¹: 3460, 3080, 3000, 1645, 1620, 1465, 1395, 1350, 1240, 1200, 1095, 950, 780, 740. δ_H (ppm) 8.01–8.02 (m, 1H), 7.42–7.61(m, 3H), 4.61 (s, 2H), 2.23 (br, 1H), 1.55 (q, 2H, J=7Hz), 1.20 (s, 3H), 1.01 (t, 3H, J=7.5Hz).

Compound **3f:** m.p. 106-107°C (lit., 11 108°C). ν_{max} (KBr)/cm $^{-1}$: 3450, 3100, 2990, 1625, 1605, 1465, 1445, 1330, 1240, 1170, 1080, 1030, 940, 900, 780, 750. δ_{H} (ppm) 8.01–8.02 (m, 1H), 7.42-7.71(m, 3H), 4.71 (s, 2H), 2.40 (br, 1H), 1.40–1.81 (m, 8H).

Compound **3g:** m.p. 129–130°C (lit., ¹¹ 130°C). v_{max} (KBr)/cm⁻¹: 3460, 3090, 2960, 1650, 1620, 1465, 1360, 1235, 1185, 1125, 1080, $1040, 990, 890, 780, 740. \delta_{H} \text{ (ppm) } 8.01 – 8.02 \text{ (m, 1H)}, 7.42 – 7.71 \text{ (m, }$ 3H), 4.63 (s, 2H), 2.40 (br, 1H), 1.40-1.80 (m, 10H).

Compound **3h:** 118–120°C (lit., ¹¹ 120°C). v_{max} (KBr)/cm⁻¹: 3300, 3080, 3030, 2950, 1645, 1615, 1505, 1465, 1610, 1360, 1285, 1250, 1200, 1090, 1060, 945, 890, 780, 750, 700. δ_{H} (ppm) 7.90–8.10 (m, 1H), 7.10-7.71(m, 13H), 5.24 (s, 2H), 4.15 (s, 1H).

Compound **3i:** m.p. 109-110°C. v_{max} (KBr)/cm⁻¹: 3310, 3090, 3040, 2950, 1645, 1620, 1505, 1465, 1360, 1285, 1250, 1200, 1090, $1060, 945, 830, 780, 740. \delta_{H} (ppm) 7.93-7.95 (m, 1H), 7.04-7.38(m, 1H)$ 11H), 5.26 (s, 2H), 4.16 (s, 1H), 2.26 (s, 6H). MS: *m/z*, 344 (M++1), 326 (4.79), 119 (100). Anal. calcd. for C₂₂H₂₁N₃O: C 76.97, H 6.12, N 12.24. Found: C 76.95, H 6.10, N 12.22.

We thank the National Natural Science Foundation of China (Project No.29872010) for financial support.

Received 2 May 2001; accepted 16 August 2001 Paper 01/878

References

- 1 A.R. Katritzky, X. Lan, J.Z. Yang and O.V. Denisko, Chem. Rev., 1998, 98, 409.
- 2 A.R. Katritzky, J. Jiang and L. Urogdi, Tetrahedron. Lett., 1989, 30, 3305.
- 3 A.R. Katritzky, Q.H. Long, P. Lue and A. Jozwiak, Tetrahedron, 1990, 46, 8153.
- 4 A.R. Katritzky, S. Rachwal and B. Rachwal, Synthesis, 1991, 69.
- 5 A.R. Katritzky, S. Rachwal and B. Rachwal, J. Org. Chem., 1989, 54, 6022.

- 6 A.R. Katritzky, I. Takahashi, W.Q. Fan and J. Pernak, Synthesis, 1991, 1147.
- 7 A.R. Katritzky, G. Zhang and J. Wu, Synth. Commun., 1994, 24, 205.
- 8 A.R. Katritzky, R. Mazurkiewiez, C.V. Stevens, M.F. Gordeev and D.J. Steel, *Synth. Commun.*, 1994, **24**, 2955.
- 9 a). W.L. Bao, Y.M. Zhang, J.Q. Zhou and Y.F. Zheng, Synth. Commun., 1996, 26, 2955; b). W.L. Bao, Y.M. Zhang and Y.F. Zheng, Org. Prep. Proc. Int., 1997, 29, 311.
- 10 A.R. Katrizky, S. Rachwal, K.C. Caster, F. Mahni, K.W. Law and O. Rubio, *J. Chem. Soc. Perkin Trans.* 1, 1987, 781.
- 11 Z.Z. Huang, H.W. Jin, D.H. Duan and X. Huang, J. Chem. Research (s), 1999, 564.

- 12 a). G.A. Molander, Org. React., 1994, 46, 211; b). G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96, 307.
- a). G.A. Molander and G. Hahn, *J. Org. Chem.*, 1986, **51**, 1135;
 b). K. Kusuda, J. Inanaga and M. Yamaguchi, *Tetrahedron Lett.*, 1989, **30**, 2945;
 c). J. Insnsga, J. Katsuki and M. Yamaguchi, *Chem. Lett.*, 1991, 1025.
- 14 J. Treu and H.M.R. Hoffman, J. Org. Chem., 1997, 14, 4650.
- 15 a). D. Maze'as, T. Skrydstrap and J.M. Beau, Angew. Chem. Intern. Ed. Engl. 1995, 34, 909; b). S. chandrasekhar, J. Yu and J.R. Falck, Tetrahedron Lett., 1994, 35, 5441.
- 16 A.R. Katritzky, J. Wu, W. Kuzmierkiewicz and S. Rachwal, *Liebigs Ann. Chem.*, 1994, 1.
- 17 A.R. Katritzky and J.N. Lam, Heteroat.Chem., 1990, 1, 21.